skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Noor, Abdul Rafae"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Using program synthesis to select instructions for and optimize input programs is receiving increasing attention. However, existing synthesis-based compilers are faced by two major challenges that prohibit the deployment of program synthesis in production compilers: exorbitantly long synthesis times spanning several minutes and hours; and scalability issues that prevent synthesis of complex modern compute and data swizzle instructions, which have been found to maximize performance of modern tensor and stencil workloads. This paper proposes MISAAL, a synthesis-based compiler that employs a novel strategy to use formal semantics of hardware instructions to automatically prune a large search space of rewrite rules for modern complex instructions in an offline stage. MISAAL also proposes a novel methodology to make term-rewriting process in the online stage (at compile-time) extremely lightweight so as to enable programs to compile in seconds. Our results show that MISAAL reduces compilation times by up to a geomean of 16x compared to the state-of-the-art synthesis-based compiler, HYDRIDE. MISAAL also delivers competitive runtime performance against the production compiler for image processing and deep learning workloads, Halide, as well as HYDRIDE across x86, Hexagon and ARM. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026